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Introduction

Over the next several class periods we will be reviewing the basic results of
probability and relating probability to the second law of thermodynamics.

Basic Probability

The theory of probability has its origins in gambling. Chevalier de Mere noted
that he could make money by offering even odds on throwing one “6” in four
rolls of a die. He reasoned (plausibly) that betting on a double “6” in 24 rolls
of a pair of dice would be profitable – it wasn’t.

The Single Die

We’ll adopt a useful device – what’s the probability of getting no sixes on four
rolls of a die? The probability of not getting a 6 on one roll is 5/6. Since the
rolls are independent of each other we can multiply the individual probabilities
to calculate the net probability:

P (no 6|fair die) =

(
5
6

)(
5
6

)(
5
6

)(
5
6

)
=

(
625
1296

)
.

We are, of course interested in the opposite result – what is the probability of
getting one six in four throws?

P (6|4 throws of a die) = 1 −
(

625
1296

)
>

(
1
2

)
,

–the bet is a winner.

P (6|fair die) =

(
1
6

)/
throw
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P (not 6|fair die) =

(
5
6

)/
throw

Notice that I’ve written my probabilities in a particular way, I have written
probabilities that are conditional. The vertical line can be read as “given that”.
There are several different schools of probability, until recently the dominant
schools was the frequentist, orthodox, or statistical school. The use of the condi-
tional symbol indicates that the writer is a member of the Bayesian, or Lapla-
cian school. Interestingly, it was shown, in 1941, that if the statistical method
produces a different result to the Bayesian method, then the statistical method
is wrong. I am an adherent of the Bayesian school, I have always been, when
I wanted to learn about this sort of thing I picked up Harold Jeffreys’ book on
probability. Since I omitted the first chapter, I wasn’t aware that there were
other methods that were accepted. I viewed it as Jeffreys simply showing that
other methods that could be used were inefficient. It was a surprise to find
that people actually used them. In case where it is obvious what is meant, I
won’t always use the conditioning notation — but I always have the background
information in mind.

In order to see why the second bet failed, we will take a brief look at sample
space.

Sample Space

A sample space is a list of all possible outcomes of an experiment. The possible
outcomes for a pair of dice are:

∣∣∣∣111111
∣∣∣∣222222

∣∣∣∣333333
∣∣∣∣444444

∣∣∣∣555555
∣∣∣∣666666

∣∣∣∣∣∣∣∣123456
∣∣∣∣123456

∣∣∣∣123456
∣∣∣∣123456

∣∣∣∣123456
∣∣∣∣123456

∣∣∣∣
. Of the 36 possible outcomes, only one is a double 6.

P (Not double 6|one roll of fair dice) =

(
1
36

)

P (Double 6|one roll of fair dice) =

(
35
36

)

Compounding probabilities multiplicatively,

P (no double 6|24 rolls of a pair of fair dice) =

(
35
36

)24

= 0.5086

Thus it is no surprise that Chevalier de Mere lost money on this bet.
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Formal definitions of probability

If there are several equally likely, mutually exclusive, and collectively exhaustive
outcomes to an experiment, the probability of an event E is given by:

P (E|Conditioning Information) =
Number of outcomes favorable to E

Total number of outcomes
.

If the event cannot be broken down into equally likely events – for instance,
what’s the probability of snow on June 21st.

P (E|Conditioning Information) =
Number of succesful occurences of E

Number of trials
.

This second definition can be expected to improve with the number of trials.

The Terminology of Probability

Event not A ⇒ A does not happen

Event A or B ⇒ In an experiment A or B or both occur

A then B ⇒ If in independent successive experiments A occurs in the 1st and
B occurs in the 2nd.

A,B are disjoint events if it is impossible for both of them to occur simulta-
neously.

Compounding Probabilities

If A,B are independent successive events or experiments:

P (A then B) = P (A)P (B),

P (not E) = 1 − p(E),

and, if A,B are disjoint,

P (A or B) = P (A) + P (B).

The reason that we calculated P (no 6|4 rolls) was that we couldn’t compound
the probabilities for one six in four rolls.
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Some Examples

Playing Cards

In a normal deck, there are fours suits and 52 cards.

P (spades) =
13
52

=
1
4

P (king) =
4
52

=
1
13

If you haven’t seen the cards, it doesn’t matter if some of them were previously
dealt. If the cards are exposed and not replaced differences emerge. In such
situations, it is best to use the notation for conditional probability so that the
conditions are clear.

P (pair|2 cards are drawn) =
3
51

In this case, it doesn’t matter what the first card was.

P (5 spades) =

(
13
52

)(
12
51

)(
11
50

)(
10
49

)(
9
48

)
= 0.000495

In this case each of the events was independent.

P (black card) =
26
52

P (red ace) =
2
52

P (black card or red ace) =
4
52

+
2
52

=
7
13

In the above case, each of the events is disjoint

Monkeys and Shakespeare

We’ll use our new found methods to answer a question posed by Sir James
Jeans. Can Monkeys type Hamlet?

We first need to determine the probability of Hamlet appearing in a random
stream. As there were no computers in Jeans’ era, we’ll assume a typewriter.
There are approximately one million characters in Hamlet, and assume that
there are 44 keys on a typewriter. (We won’t worry about the shift key.) Thus
the probability of getting any character is 1/44. So

P (Hamlet|Random typing) =

(
1
44

)(
1
44

)
. . .

(
1
44

)
=

(
1
44

)106

.
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This is one of those numbers for which your calculator provides little help. We
can use logarithms, log10 44 = 1.643453. Now if loga x = y, then ay = x, so
44 = 101.643453. Thus we can write

P (Hamlet|Random) =

(
1
44

)106

=
1

(44)106 .

So

P (Hamlet|Random) =
1

(101.643453)106 =
1

101643453
.

We have now calculated the probability of typing Hamlet if we type one million
characters at random. The probability can be expected to increase if more
characters are typed. The question is, by how much does the probability go up?

We will now work this out, the question is how many monkeys and how
many keystrokes. Let’s assume that the number of monkeys that has ever lived
is 1010. Further let each of them have lived for the age of the universe, that is
1018. Finally, we’ll assume that they can hit ten keys per second. (Some good
typists can.) Now clearly the probability will go up. How do we calculate it?
By a scheme that we have used before. We’ll calculate the probability that they
do not type Hamlet.

P (Hamlet|Random) = 10−1643453,

P (No Hamlet|Random) = 1 − 10−1643453.

With 1029 keystrokes, we can write the probability as

P (No Hamlet|Random) = (1 − 10−1643453)29.

Some of you might not like this step, and would want to add 106 keystrokes to
either end of the manuscript. Remember that 2× 106 is negligible compared to
1029. To evaluate this probability we use

(1 + x)p = 1 + px +
p(p − 1)x2

2!
+ . . . , if |x| < 1.

Therefore,
P (No Hamlet|Random) = 1 − 102910−1643453,

and finally,

P (Hamlet|Random) = 102910−1643453 = 10−1643424.

This could be said to be the meaning of never.

Methods of Counting

If something can be done n1 ways, and something else can be done in n2 ways,
then the number of ways of doing these things in succession is n1n2. This is
called /Fundamental Principle of counting.
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Permutations

How many ways can 13 objects be arranged (or rearranged)?

13 × 12 × 11 × 10 × . . . × 1 = 13! = 6, 227, 020, 800

The question that we have really asked here is: given n objects, how many ways
can we permute them? We denote the number of permutations of n things take
n at a time as nPn, P (n, n), or Pn

n . To clarify this think of n people sitting in
n chairs. There are

n(n − 1)(n − 2) . . . 1 = n!

ways of arranging them. Thus,

P (n, n) = n!

Now consider n chairs and r people, where r < n. Then there are
n ways of filling the first
n − 1 ways of filling the second
n − 2 ways of filling the third
So how many ways are there of filling chair r? To determine this consider the
following
n = n − 1 + 1
n − 1 = n − 2 + 1
n − 2 = n − 3 + 1
For the rth this fives us the answer n − r + 1.
Thus the number of permutations of n things taken r at a time is

P (n, r) = n(n − 1)(n − 2) . . . (n − r + 1).

We can rewrite this as

P (n, r) = n(n − 1)(n − 2) . . . (n − r + 1) × (n − r)!
n − r)!

=
n!

(n − r)!

resulting in

P (n, r) =
n!

(n − r)!

This calculation assumes that the order of the objects is important. It can be
used to answer such questions as: How many different finishes among the first
three places can occur in an eight horse race. The answer is

P (8, 3) =
8!

(8 − 3)!
= 336.

It can’t answer questions like how many distinct foursomes can be formed from
seven golfers. Here the order of the golfers on the scorecards doesn’t matter, for
this we need combinations.
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Combinations

So how many combinations can be formed from seven golfers? The number of
permutations is P (7, 4) = 7!/3! = 840. Since we don’t care about order, this
contains 4! useless rearrangements of the same names – a given foursome can
be ordered in 4! ways. The number of foursomes is P (7, 4)/4! We call this the
number of combinations of n things taken r at a time. This is written as nCr,
C(n, r), or (n

r ), we read this as “n” choose “r.”

C(n, r) =
P (n, r)

r!
=

n!
r!(n − r)!

We can write the relationship as

P (n, r) = C(n, r).P (r, r)

Combinations can be used to answer such questions as: What is the coefficient
of x8 in the binomial expansion of (1 + x)15? I suppose we could work it out,
but there is an easier method. Think! We obtain the term inx8 by multiplying
1′s in 7 brackets by x′s from the other 8. The number of choosing 8 form 15 is

C(15, 8) =
15!
8!7!

This is the desired coefficient of x8.

Detailed Example

Let’s check this method for (1 + x)3

(1+x)3 = (1+2x+x2)(1+x) = 1+2x+x2 +x+2x2 +x3 = 1+3x+3x2 +x3

The coefficients are
x0: C(3, 0) = 3!

3!0! = 1
x1: C(3, 1) = 3!

1!2! = 3
x2: C(3, 2) = 3!

2!1! = 3
x3: C(3, 3) = 3!

0!3! = 1
Generalizing, if we have (a+b)n, then the coefficient of an−rbr is C(n, r), usually
written as (n

r ). The binomial expansion can then be written as

(a + b)n =
n∑

r=0

(n
r )an−rbr

The Basic Problem of Thermal Physics

Many problems that arise in thermal physics reduce to the following: Given N
balls and n boxes, how many ways can they be arranged so that there are N1

in the first, N2 in the second, . . . , Nn in the nth, and what is the probability
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that a given distribution will occur? Let’s take a particular case.
N = 15

Box Number Number of Balls
1 3
2 1
3 4
4 2
5 3
6 2

Order is obviously unimportant in this case.
How many ways can we choose 3 from 15 for the first box? The answer is
C(15, 3). This leaves
12 box 2 C(12, 1)
11 box 3 C(11, 4)
7 box 4 C(7, 2)
5 box 5 C(5, 3)
2 box 6 C(2, 2)
Therefore, the total number of ways is

C(15, 3)C(12, 1)C(11, 4)C(7, 2)C(5, 3C(2, 2)

=
15!

12!3!
12!

11!1!
11!
7!4!

7!
5!2!

5!
2!3!

2!
2!0!

=
15!

4!(3!)2(2!)21!

Now, what’s the probability of this distribution occurring? Assume a random
distribution, each ball has a one in six chance of being in any box. So we can
place the
1st ball in 6 ways
2nd ball in 6 ways
3rd ball in 6 ways
4th ball in 6 ways
5th ball in 6 ways
. . .
15th ball in 6 ways
The fundamental principle of counting yields 615 total ways. Recall

P (E|Conditioning Information) =
Number of outcomes favorable to E

Total number of outcomes
so

P =
15!

4!(3!)2(2!)21!

615
≈ 8 × 10−4

Now, we’ll consider restricting the number of particles allowed in a box. Con-
sider the problem of placing 4 balls in 6 boxes with the constraint that the
maximum number of balls in any box is 1. The total number of ways of dis-
tributing the balls is not 64. There are six ways of choosing the first box, five
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ways of choosing the second, four ways of choosing the third and three ways of
choosing the fourth box. The total number of ways is 6 × 5 × 4 × 3.

Let’s rewrite this. Consider the number of permutations of 6 objects taken
4 at a time.

P (6, 4) =
6!
2!

= C(6, 4).4! =
6!

4!1!
4! = 6 × 5 × 4 × 3

Now what’s the probability that the first two boxes are vacant when the other
four are filled?
The number of ways of arranging 4 balls in the last four boxes is 4!. This is the
number of favorable outcomes. The probability of the distribution is

P =
4!

C(6, 4)4!
=

1
C(6, 4)

.

4! is the number of ways of arranging 4 balls in the 4 occupied boxes. This
will be the same for any given set of 4 boxes. The quantity C(6, 4) tells us the
number of ways of picking the four occupied boxes from the 6 boxes. There is
only one way to pick the first two boxes to be vacant so the probability is 1

C(6,4) .

We could look at this problem in another way. Consider the set of four identical
(or indistinguishable) balls being placed in six distinguishable boxes.

The balls are identical, the 4! arrangements of the 4 balls in the 4 boxes all
look alike. So there are C(6, 4) distinguishable rearrangements of 4 identical
balls in 6 boxes (one or no balls per box.) All the arrangements are equally
probable, so the probability of any one arrangement is 1

C(6,4) as before.
The probability of 2 particular boxes being empty is the same whether the

objects are distinguishable not. This only happened because all the distinguish-
able arrangements are equally probable. Without the restriction of 1 per box
the distinguishable arrangements are not equally probable and we’d get different
results.
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